The Two Dimensional Universe?

Last year, many were surprised to hear that a possible clue to the nature of the universe had been discovered, and may intimate that the universe is, as possibly suspected, indeed holographic.  From February of 2009:

Craig Hogan, a physicist at Fermilab Centre for Particle Astrophysics in Illinois is convinced that he has found proof in the data of the gravitational wave detector GEO600 of a holographic Universe – and that his ideas could explain mysterious noise in the detector data that has not been explained so far.

The British-German team behind the GEO600, which includes scientists from the School of Physics and Astronomy’s Gravitational Physics Group, will now carry out new experiments in the coming months to yield more evidence about Craig Hogan’s assumptions. If proved correct, it could help in the quest to bring together quantum mechanics and Einstein’s theory of gravity.

In order to test the theory of holographic noise, the frequency of GEO600´s maximum sensitivity will be shifted towards ever higher frequencies. The frequency of maximum sensitivity is the tone that the detector can hear best. It is normally adjusted to offer the best chance for hearing exploding stars or merging black holes.

Even if it turns out that the mysterious noise is the same at high frequencies as at the lower ones, this will not constitute proof for Hogan’s hypothesis. It would, however, provide a strong motivation for further study. The sensitivity of GEO600 will then be significantly improved by using ‘squeezed vacuum’ and by the installation of a mode filter in a new vacuum chamber. The technology of ‘squeezed vacuum’ was particularly refined in Hannover and would be used in a gravitational wave detector for the first time.

Professor Jim Hough of Glasgow University, one of the pioneer developers of gravitational wave detectors, says: ‘Craig Hogan made a very interesting prediction. It may be the first of a number of unexpected possibilities to be investigated as gravitational wave detectors become more sensitive.’

Professor Bernard Schutz, Professor at the School of Physics and Astronomy, member of the Gravitational Physics Group at the School, and recently elected as an Honorary Fellow of the Royal Astronomical Society said: “It would be truly remarkable if GEO600 is sensitive to the quantum nature of space and time. The only way to confirm that would be to carry out controlled experiments, the results of which can be solely attributed to holographic noise. Such an experiment would herald a new era in fundamental physics”.

Source

Such an experiment is now in the planning:

PhysOrg.com) — Many ideas in theoretical physics involve extra dimensions, but the possibility that the universe has only two dimensions could also have surprising implications. The idea is that space on the ultra-small Planck scale is two-dimensional, and the third dimension is inextricably linked with time. If this is the case, then our three-dimensional universe is nothing more than a hologram of a two-dimensional universe.

This idea of the holographic is not new, but physicists at Fermilab are now designing an experiment to test the idea. Fermilab particle astrophysicist Craig Hogan and others are building a holographic , or “holometer,” in an attempt to detect the noise inherent in spacetime, which would reveal the ultimate maximum frequency limit imposed by nature.

As Hogan explains in a recent issue of Fermilab’s symmetry magazine, the holometer will be “the most sensitive measurement ever made of spacetime itself.” Hogan and others have already built a one-meter-long prototype of the instrument. They have just begun building the entire 40-meter-long holometer and plan to start collecting data next year.

The holometer consists of two completely separate interferometers positioned on top of one other. In each interferometer, a light beam is split into two different parts that travel in different directions. After bouncing off a mirror, the light beams are brought back together where the difference in their phases is measured. Even the smallest vibration will interfere with the light’s frequency during its travels and cause the two light beams to be out of sync.

While interferometers have been used for more than 100 years, the key to the holometer is achieving extreme precision at high frequencies. The scientists say that the holometer will be seven orders of magnitude more precise than any atomic clock in existence over very short time intervals. By having two interferometers, the researchers can compare them to confirm measurements. In addition, the scientists are making sure that any vibration that is detected isn’t coming from the holometer itself. They will arrange sensors outside the holometer to detect normal vibrations, and then cancel these vibrations by shaking the mirrors at the same frequency.

After taking these precautions, any detected high-frequency noise could be the jitter of spacetime itself, or “holographic noise.” The noise is expected to have a frequency of a million cycles per second, which is a thousand times higher than what the human ear can hear, noted Fermilab experimental physicist Aaron Chou. If the experiment does find this holographic noise, it would be the first glimpse beyond our three-dimensional illusion and into the universe’s true two-dimensional nature at the Planck scale.

Very intriguing possibilities.  I have often wondered where cognition might cross paths with physics.  It is a disconcerting fact that our reality is only a perception.  This perception is created by neurochemicals that are known to be hallucinogenic in nature.

Things keep getting stranger and stranger….

Advertisements

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s

%d bloggers like this: